Skip Navigation
Skip to contents

Diabetes Metab J : Diabetes & Metabolism Journal

Search
OPEN ACCESS

Search

Page Path
HOME > Search
5 "Joonyub Lee"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Drug/Regimen
Efficacy and Safety of Alogliptin-Pioglitazone Combination for Type 2 Diabetes Mellitus Poorly Controlled with Metformin: A Multicenter, Double-Blind Randomized Trial
Ji-Yeon Park, Joonyub Lee, Yoon-Hee Choi, Kyung Wan Min, Kyung Ah Han, Kyu Jeung Ahn, Soo Lim, Young-Hyun Kim, Chul Woo Ahn, Kyung Mook Choi, Kun-Ho Yoon, the Practical Evidence of Antidiabetic Combination Therapy in Korea (PEAK) study investigators
Received August 7, 2023  Accepted November 30, 2023  Published online April 23, 2024  
DOI: https://doi.org/10.4093/dmj.2023.0259    [Epub ahead of print]
  • 229 View
  • 11 Download
AbstractAbstract PDF
Background
Guidelines for switching to triple combination therapy directly after monotherapy failure are limited. This study investigated the efficacy, long-term sustainability, and safety of either mono or dual add-on therapy using alogliptin and pioglitazone for patients with type 2 diabetes mellitus (T2DM) who did not achieve their target glycemic range with metformin monotherapy.
Methods
The Practical Evidence of Antidiabetic Combination Therapy in Korea (PEAK) was a multicenter, placebo-controlled, double-blind, randomized trial. A total of 214 participants were randomized to receive alogliptin+pioglitazone (Alo+Pio group, n=70), alogliptin (Alo group, n=75), or pioglitazone (Pio group, n=69). The primary outcome was the difference in glycosylated hemoglobin (HbA1c) levels between the three groups at baseline to 24 weeks. For durability, the achievement of HbA1c levels <7% and <6.5% was compared in each group. The number of adverse events was investigated for safety.
Results
After 24 weeks of treatment, the change of HbA1c in the Alo+Pio, Alo, and Pio groups were –1.38%±0.08%, –1.03%±0.08%, and –0.84%±0.08%, respectively. The Alo+Pio group had significantly lower HbA1c levels than the other groups (P=0.0063, P<0.0001) and had a higher proportion of patients with target HbA1c achievement. In addition, insulin sensitivity and β-cell function, lipid profiles, and other metabolic indicators were also improved. There were no significant safety issues in patients treated with triple combination therapy.
Conclusion
Early combination triple therapy showed better efficacy and durability than the single add-on (dual) therapy. Therefore, combination therapy with metformin, alogliptin, and pioglitazone is a valuable early treatment option for T2DM poorly controlled with metformin monotherapy.
Sulwon Lecture 2022
Others
Opening the Precision Diabetes Care through Digital Healthcare
Joonyub Lee, Jin Yu, Kun-Ho Yoon
Diabetes Metab J. 2023;47(3):307-314.   Published online March 29, 2023
DOI: https://doi.org/10.4093/dmj.2022.0386
  • 5,327 View
  • 247 Download
AbstractAbstract PDFPubReader   ePub   
The national healthcare systems of every country in the world cannot sustain the rise in healthcare expenditure caused by chronic diseases and their complications. To sustain the national healthcare system, a novel system should be developed to improve the quality of care and minimize healthcare costs. For 20 years, our team developed patient-communicating digital healthcare platforms and proved their efficacy. National scale randomized control trials are underway to systematically measure the efficacy and economic benefits of this digital health care system. Precision medicine aims to maximize effectiveness of disease management by considering individual variability. Digital health technologies enable precision medicine at a reasonable cost that was not available before. The government launched the “National Integrated Bio-big Data Project” which will collect diverse health data from the participants. Individuals will share their health information to physicians or researchers at their will by gateway named “My-Healthway.’ Taken together, now we stand in front of the evolution of medical care, so-called “Precision medicine.” led by various kinds of technologies and a huge amount of health information exchange. We should lead these new trends as pioneers, not as followers, to establish and implement the best care for our patients that can help them to withstand their devastating diseases.
Corrigendum
Early Glycosylated Hemoglobin Target Achievement Predicts Clinical Outcomes in Patients with Newly Diagnosed Type 2 Diabetes Mellitus
Joonyub Lee, Jae Hyoung Cho
Diabetes Metab J. 2021;45(4):621-621.   Published online July 30, 2021
DOI: https://doi.org/10.4093/dmj.2021.0119
Corrects: Diabetes Metab J 2021;45(3):337
  • 3,004 View
  • 70 Download
  • 1 Crossref
PDFPubReader   ePub   

Citations

Citations to this article as recorded by  
  • Dynamic Detection of HbA1c Using a Silicon Nanowire Field Effect Tube Biosensor
    Hang Chen, Lijuan Deng, Jialin Sun, Hang Li, Xiaoping Zhu, Tong Wang, Yanfeng Jiang
    Biosensors.2022; 12(11): 916.     CrossRef
Editorial
Early Glycosylated Hemoglobin Target Achievement Predicts Clinical Outcomes in Patients with Newly Diagnosed Type 2 Diabetes Mellitus
Joonyub Lee, Jae Hyoung Cho
Diabetes Metab J. 2021;45(3):337-338.   Published online May 25, 2021
DOI: https://doi.org/10.4093/dmj.2021.0078
Correction in: Diabetes Metab J 2021;45(4):621
  • 4,028 View
  • 209 Download
  • 4 Web of Science
  • 3 Crossref
PDFPubReader   ePub   

Citations

Citations to this article as recorded by  
  • Evaluation of Left Ventricular Function in Diabetes Patients with Microvascular Disease by Three-Dimensional Speckle Tracking Imaging
    青 周
    Advances in Clinical Medicine.2023; 13(12): 18908.     CrossRef
  • Association of long-term visit-to-visit variability of HbA1c and fasting glycemia with hypoglycemia in type 2 diabetes mellitus
    Chen Long, Yaling Tang, Jiangsheng Huang, Suo Liu, Zhenhua Xing
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Time to Reach Target Glycosylated Hemoglobin Is Associated with Long-Term Durable Glycemic Control and Risk of Diabetic Complications in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A 6-Year Observational Study (Diabetes Metab J 2021;45:368-78)
    Kyoung Jin Kim, Jimi Choi, Jae Hyun Bae, Kyeong Jin Kim, Hye Jin Yoo, Ji A Seo, Nan Hee Kim, Kyung Mook Choi, Sei Hyun Baik, Sin Gon Kim, Nam Hoon Kim
    Diabetes & Metabolism Journal.2021; 45(4): 617.     CrossRef
Original Article
Pathophysiology
Essential Role of Protein Arginine Methyltransferase 1 in Pancreas Development by Regulating Protein Stability of Neurogenin 3
Kanghoon Lee, Hyunki Kim, Joonyub Lee, Chang-Myung Oh, Heein Song, Hyeongseok Kim, Seung-Hoi Koo, Junguee Lee, Ajin Lim, Hail Kim
Diabetes Metab J. 2019;43(5):649-658.   Published online April 8, 2019
DOI: https://doi.org/10.4093/dmj.2018.0232
  • 5,203 View
  • 70 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDFPubReader   
Background

Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells. Recent studies have revealed that PRMT1 plays important roles in the development of various tissues. However, its role in pancreas development has not yet been elucidated.

Methods

Pancreatic progenitor cell-specific Prmt1 knock-out (Prmt1 PKO) mice were generated and characterized for their metabolic and histological phenotypes and their levels of Neurog3 gene expression and neurogenin 3 (NGN3) protein expression. Protein degradation assays were performed in mPAC cells.

Results

Prmt1 PKO mice showed growth retardation and a severely diabetic phenotype. The pancreatic size and β-cell mass were significantly reduced in Prmt1 PKO mice. Proliferation of progenitor cells during the secondary transition was decreased and endocrine cell differentiation was impaired. These defects in pancreas development could be attributed to the sustained expression of NGN3 in progenitor cells. Protein degradation assays in mPAC cells revealed that PRMT1 was required for the rapid degradation of NGN3.

Conclusion

PRMT1 critically contributes to pancreas development by destabilizing the NGN3 protein.

Citations

Citations to this article as recorded by  
  • Arginine 65 methylation of Neurogenin 3 by PRMT1 is required for pancreatic endocrine development of hESCs
    Gahyang Cho, Kwangbeom Hyun, Jieun Choi, Eunji Shin, Bumsoo Kim, Hail Kim, Jaehoon Kim, Yong-Mahn Han
    Experimental & Molecular Medicine.2023; 55(7): 1506.     CrossRef
  • Protein arginine methyltransferase 1 in the generation of immune megakaryocytes: A perspective review
    Xinyang Zhao, Zechen Chong, Yabing Chen, X. Long Zheng, Qian-Fei Wang, Yueying Li
    Journal of Biological Chemistry.2022; 298(11): 102517.     CrossRef
  • Arginine 65 Methylation of Neurogenin 3 by PRMT1 Is Required for Pancreatic Endocrine Development of hESCs
    Gahyang Cho, Kwangbeom Hyun, Jieun Choi, Eun Ji Shin, Bumsoo Kim, Hail Kim, Jaehoon Kim, Yong-Mahn Han
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Protein Arginine Methyltransferase 1 Is Essential for the Meiosis of Male Germ Cells
    Sahar Waseem, Sudeep Kumar, Kanghoon Lee, Byoung-Ha Yoon, Mirang Kim, Hail Kim, Keesook Lee
    International Journal of Molecular Sciences.2021; 22(15): 7951.     CrossRef
  • Proteome-Wide Alterations of Asymmetric Arginine Dimethylation Associated With Pancreatic Ductal Adenocarcinoma Pathogenesis
    Meijin Wei, Chaochao Tan, Zhouqin Tang, Yingying Lian, Ying Huang, Yi Chen, Congwei Chen, Wen Zhou, Tao Cai, Jiliang Hu
    Frontiers in Cell and Developmental Biology.2020;[Epub]     CrossRef

Diabetes Metab J : Diabetes & Metabolism Journal